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Abstract. We analyse the effect of quenched uncorrelated randomness coupling to the local
energy density of a model consisting ofN coupled two-dimensional Ising models. ForN > 2
the pure model exhibits a fluctuation-driven first-order transition, characterized by runaway
renormalization-group behaviour. We show that the addition of weak randomness acts to stabilize
these flows, in such a way that the trajectories ultimately flow back towards thepure decoupled
Ising fixed point, with the usual critical exponentsα = 0, ν = 1, apart from logarithmic
corrections. We also show by examples that, in higher dimensions, such transitions may either
become continuous or remain first-order in the presence of randomness.

The effect of quenched randomness coupling to the local energy density of a system which,
in its absence, undergoes a continuous phase transition is well understood from the point
of view of the renormalization-group version of the Harris criterion [1]. When the specific
heat exponentα of the pure model is negative, weak randomness is irrelevant from the
renormalization-group point of view, and the pure fixed point is stable. On the other hand,
whenα > 0 it is relevant, and, at least when the crossover exponentα is small, it may be
argued that the critical behaviour is controlled by a new, random, fixed point close by.

The effect on systems which undergo thermal first-order transitions is more dramatic.
It was argued some time ago by Imry and Wortis [2] that, in two dimensions, such systems
should always exhibit a continuous transition in the presence of such randomness. This is
because the random impurities couple to the local energy density in much the same way that a
random field couples to the local magnetization in an Ising system. In dimensionsd 6 2, the
Imry–Ma argument [3] implies that such random fields should destroy the ordered phases at
low temperature, and therefore also the first-order phase boundary between them. A similar
argument, applied to randomness coupling to the local energy density, then implies that a
non-zero latent heat is impossible in two dimensions in random systems whose pure versions
exhibit such behaviour. This argument has been rediscovered and put on a rigorous basis
by Aizenman and Wehr [4], and is supported by the phenomenological and approximate
renormalization-group arguments of Hui and Berker [5]. Monte Carlo work of Chenet al [6]
on theq = 8 state Potts model and of Domany and Wiseman [7] on the Ashkin–Teller and
four-state Potts models supports this conclusion, and goes further: the continuous transition
found by these workers exhibits critical exponents which are consistent with those of the
pure Ising model, namelyγ /ν ≈ 1.75, β/ν ≈ 0.125 andα ≈ 0. An argument explaining
these findings has been put forward by Kardaret al [8]. They study the properties of an
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interface in theq-state random-bond Potts model at low temperatures. Forq 6= 2 this has
a branching structure, but the authors argue, on the basis of simplified recursion relations
which are exact on a hierarchical lattice, that the critical behaviour where the interfacial
free energy vanishes is governed by a zero-temperature fixed point (as in the random-field
problem), and the Widom exponentµ which governs the vanishing of the surface tension is
independent ofq for sufficiently largeq, being numerically consistent with the Ising value
µ = 1.

The first-order transition in the pureq-state Potts model is of mean-field type, that is, it is
already predicted on the basis of mean-field theory. Such ‘strong’ first-order transitions are
described within the renormalization group by zero-temperature, discontinuity fixed points,
characterized by a relevant renormalization-group eigenvaluey = d whose scaling field
couples to the local energy density. Quenched randomness coupling to this has eigenvalue
d−2(d−y) = d, and is therefore also strongly relevant. It is thus difficult to treat the effects
of such randomness systematically within a controlled renormalization-group calculation.

In this paper, by contrast, we study the effects of quenched randomness coupling to
the local energy density on systems whose pure versions exhibitfluctuation-drivenfirst-
order transitions. These are transitions which are expected to be continuous on the basis
of a mean-field analysis, but which are driven at first order by the fluctuation effects.
In terms of the renormalization group, they are often characterized by so-called runaway
behaviour, that is, the renormalization-group trajectories move out of the region in which
the original perturbative calculation is valid. That, in itself, does not guarantee that the
system in question undergoes a first-order transition, but often it is possible to argue that
the trajectories then move into a region where mean-field theory is applicable, and which
may then predict a first-order transition. The Imry–Wortis argument [2, 4] should, of course,
apply equally well to systems exhibiting fluctuation-driven first-order transitions. However,
the advantage of studying these from the renormalization group point of view is that it is
possible to analyse them within a controlled perturbative scheme and to elucidate the nature
of the fixed point which governs the continuous critical behaviour of the random system.

A simple example of a two-dimensional system which exhibits a fluctuation-driven
first-order transition is that ofN Ising models coupled through their local energy densities.
Microscopically this may be represented in terms of a lattice model withN Ising spins
(s1(r), . . . , sN(r)) at each siter of the lattice. The reduced Hamiltonian is

H = −K
∑

i

∑
r,r ′

si(r)si(r
′) − g

∑
i 6=j

∑
r,r ′

si(r)si(r
′)sj (r)sj (r ′) (1)

where the sums over(r, r ′) are over nearest-neighbour sites. Such a model is self-dual on
the square lattice, so that the critical couplingKc may be found exactly. In the absence of
randomness, the renormalization group equations on the critical surface have the form

dg/d` = (N − 2)g2 + O(g3) . (2)

For N = 2, this vanishes, as expected since this case corresponds to the Ashkin–Teller
model which exhibits a line of fixed points labelled byg [9]. When N > 2, however,
initially small positive values ofg flow out of the region of validity of the perturbative
equation (2). When equation (1) is analysed within mean-field theory, the quartic term in
the free energy remains positive ifg is small, indicating a continuous transition, but, for
sufficiently largeg, it changes sign so that the mean-field transition becomes first-order.
Since the renormalization group indicates that, no matter what the initial value ofg, it
should ultimately renormalize into this region, it implies that the transition should be first-
order for all g, and is therefore of a fluctuation-driven nature for smallg. In fact, on the
critical surface, this model when expressed in terms of Ising fermions is nothing but the
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Gross–Neveu model [10], which is believed to be massive forN > 2, corresponding to a
finite correlation length. ForN → ∞ this model may also be solved exactly, with the same
conclusion [11].

We now consider adding quenched randomness which couples to the local energy
density. This may be done in a variety of ways, but, in order to focus on the universal
properties of such a coupling, let us first rewrite (1) in a continuum notation in terms of
the local energy densityEi(r) of each Ising model. The Hamiltonian density, close to the
critical point of the pure system, may then be written as

H = Hc + t
∑

i

Ei − g
∑
i 6=j

EiEj (3)

whereHc is the fixed-point Hamiltonian andt is the temperature deviation from the critical
point. Quenched randomness is now added by allowingt → t + δt (r), whereδt (r) = 0
and δt (r)δt (r ′) = 1δ(r − r ′). Introducingn replicasa = 1, . . . , n and averaging over a
Gaussian distribution, the replicated Hamiltonian density is

H =
∑

a

Ha
c + t

∑
i,a

Ea
i − g

∑
i 6=j,a

Ea
i Ea

j − 1
∑

i,j,a,b

Ea
i Eb

j . (4)

Note that each term has a well-defined behaviour under the duality operation under whichEa
i

reverses sign. The self-dual critical point therefore remains att = 0 in this parametrization.
It is possible to consider replica-coupling terms which break this duality symmetry, but they
are all irrelevant close to the pure decoupled fixed point.

The perturbative renormalization group equations for the couplings follow, using
standard methods. In general for a perturbed Hamiltonian density of the formH =
Hc + ∑

i gi8i , they have the form [12]

dgk/d` = ykgk −
∑
i,j

cijkgigj + O(g3) (5)

whereyi is the eigenvalue at the unperturbed fixed point, andcijk is the coefficient of8k

in the operator product expansion of8i with 8j . In the present case, these are very easy
to work out. Both the interaction terms in (4) have a similar form, and are in fact special
cases of a very general model ofNn interacting Ising models, with a Hamiltonian density

H = Hc +
Nn∑

p 6=q=1

GpqEpEq . (6)

The terms withp = q are excluded since the operator product expansion ofEp with itself
in the Ising model yields only the trivial identity operator. Normalizing the energy density
so thatEp · Ep′ = δpp′ , the required terms in the operator product expansion are then

(EpEq) · (Ep′Eq ′) = δpp′(EqEq ′) + permutations+ · · · (7)

from which follow the general renormalization group equations:

dGpq/d` = −4(1 − δpq)
∑

r

GprGrq + O(G3) . (8)

Specializing these to the case at hand, we then find, in the limitn → 0, the flow
equations

dg/d` = 4(N − 2)g2 − 8g1 + · · · (9)

d1/d` = −812 + 8(N − 1)g1 + · · · (10)

dt/d` = t
(
1 − 41 + 4(N − 1)g

) + · · · . (11)
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Figure 1. RG flows on the critical surface for the caseN = 3. Several trajectories are shown,
for different initial values of the randomness1 at a fixed value of the couplingg between the
Ising models. Although they initially flow towards strong coupling, they eventually curl back
towards the pure Ising fixed point.

The last equation in fact follows from the second by the renormalization group version of
the Harris criterion [13]. For the caseN = 2 these equations are equivalent to those found
for the random Ashkin–Teller model by Dotsenko and Dotsenko [14]. Remarkably, the
flows in the critical surface obtained by solving these equations may be found in closed
form for generalN :

g = constant× (1/g)(N−2)/N e−21/Ng . (12)

These are shown in figure 1 for the caseN = 3.
For g = 0 we find that the randomness is marginally irrelevant, consistent with the

well known case of the random Ising model [15, 16]. In the absence of randomness, the
flows for g > 0 run away to the first-order region, as discussed above. However, for any
non-zero randomness the trajectories eventually curl around and approach the fixed point
corresponding toN decoupled pure Ising models. Of course equations (9)–(11) are strictly
valid only inside the perturbative region where the initial values of the parameters are small,
but it is reasonable to expect that the topology of the renormalization group flows should
persist at least in some finite region around the origin. This topology has two important
consequences: first, as dictated by the Imry–Wortis argument, the transition has become
continuous, and secondly, the asymptotic critical behaviour is that of the pure Ising model,
similar to those cases discussed earlier. In fact, by integrating equation (11) fort it may
be shown that the specific heat has a singularity of the formA ln ln(1/t), just as for the
random bond Ising model [15], but with an amplitudeA ∝ 1−(N−2)/N . Flows of the type
shown in figure 1 are very unusual as they violate thec-theorem [17]. Of course, that this
can happen is a consequence of then → 0 replica limit.

It is instructive to extend the above analysis to dimensionsd = 2 + ε, since the
Imry–Wortis argument leads to no definite conclusion in that case. The perturbative
renormalization group equations become

dg/d` = αpg + (
4(N − 2) + 2b2

)
g2 − (8 − 4b2)g1 + · · · (13)

d1/d` = αp1 − (8 − 2b2)12 + 8(N − 1)g1 + · · · (14)

dt/d` = t
(
d/(2 − αp) − (4 − 2b2)1 + 4(N − 1)g

) + · · · . (15)
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The linear terms are a consequence of the fact that the specific heat exponentαp of the
pure model no longer vanishes: this determines the eigenvalues ofg and 1 at this fixed
point according to the Harris criterion. The parameterb is the operator product expansion
coefficient appearing inEp · Eq = δpq + bδpqEp + · · · . With the energy density normalized
in this way, it is universal, depending only ond, but it vanishes ford = 2 as a consequence
of duality, and is therefore presumably small just above two dimensions. (Ind = 4, at
the Gaussian fixed point,b = 2

√
2.) Wheng = 0, the randomness is now relevant, and

the critical behaviour is controlled by a non-trivial random fixed point at1 = O(αp) [13].
However, whenb 6= 0, g is in fact relevant at this fixed point, and there exists another,
more stable fixed point, which, forb � 1, is located atg ≈ b2αp/16N , 1 ≈ αp/8. When
g > 0 initially, the trajectories move towards larger values ofg before eventually curling
around to finish at this new coupled random fixed point. Therefore this gives an example
of a fluctuation-driven first-order transition ind > 2 dimensions, which is converted to a
continuous transistion, as ind = 2. However, now the critical behaviour is controlled by a
new, random, fixed point. Such a fixed point, if it persists as far asε = 1, would describe
the random Ashkin–Teller model in three dimensions, at least for small values ofg.

The above calculation breaks down near four dimensions (if not before), due to the
proximity of the Gaussian fixed point. As a further example of what can happen to a
fluctuation-driven first-order transition in 4−ε dimensions, consider the well known problem
of the O(N), or N -vector, model, with cubic symmetry breaking [18]. This model hasN -
component continuous spinsSi(r), and the replicated Hamiltonian density is

H = t
∑
i,a

(
Sa

i

)2 + u
∑
i,j,a

(
Sa

i

)2(
Sa
j

)2 + v
∑
i,a

(
Sa

i

)4 − 1
∑

i,j,a 6=b

(
Sa

i

)2(
Sb
j

)2
. (16)

For u � v this may be viewed as a continuous spin version of (4), withg = −u. However,
in the absence of randomness this model also possesses an O(n) fixed point (which is absent
for d = 2) and a cubic fixed point where bothu and v are non-zero. The perturbative
renormalization group equations may be found from the operator product expansion as
above:

du/d` = εu − 8(N + 8)u2 + 8N12 − 48uv + · · · (17)

dv/d` = εv − 72v2 − 96uv + · · · (18)

d1/d` = ε1 − 16(N − 2)12 − 16(N + 2)u1 − 48v1 + · · · . (19)

When1 = 0 these exhibit runaway behaviour to the first-order region whereu andv are
large and negative, if the initial value ofv is sufficiently negative (forN > 4, when the
cubic fixed point is in the quadrant withv > 0, this requires only thatu > 0 andv < 0
initially). However, since1 does not enter the flow equation forv, this catastrophe still
occurs in the presence of randomness. We conclude that quenched randomness does not
change the order of the transition in this case. This is, of course, quite consistent with the
Imry–Wortis argument, which does not rule out either behaviour ford > 2.

The case whereu < 0 and v > 0 corresponds to the same example ofN coupled
Ising models as before, this time near four dimensions. Solving the renormalization group
equations forv near the decoupled Ising fixed point, we find (usingg rather thanu)

dg/d` = 1
3εg + 8Ng2 + 32g1 + · · · (20)

d1/d` = 1
3ε1 + 16(N − 2)g1 + · · · . (21)

When g = 0, these equations have no perturbative fixed point, despite the fact that1 is
relevant. This is the well known problem of the random Ising model neard = 4, and it
is cured in a higher-order calculation [19], when a term O(13) appears on the right-hand
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side of (21), giving an O(ε1/2) fixed point. However, it may be seen from the structure of
the other terms in (20) and (21) that this cannot cure the runaway behaviour which occurs
once the couplingg is initially non-zero. We conclude that the fluctuation-driven first-order
transition probably persists in this case.

As a final example, we may quote the case of the complex O(N) model near four
dimensions, coupled to a long-rangeU(1) gauge field, known as the Abelian Higgs model
for the caseN = 1. This was argued long ago to undergo a fluctuation-driven first-order
transition near four dimensions for sufficiently smallN [20]. The effect of quenched random
impurities was studied by Boyanovsky and Cardy [21], who found that for sufficiently weak
randomness the first-order nature of the transition persists, while for stronger randomness
the trajectories spiral in towards a new random fixed point, corresponding to a continuous
transition.

To summarize, we have given examples of how quenched randomness coupling to the
local energy density converts a fluctuation-driven first-order transition into a continuous one
for d = 2, consistent with the Imry–Wortis argument, and of how this may or may not
happen whend > 2.

We conclude with a discussion of the conjecture that all random critical behaviour
in two dimensions is Ising-like. This is based on numerical results on the random Ising
model [22–24], the Ashkin–Teller model and the four-state Potts model [7]† (all of which
exhibit continuous transitions in the absence of randomness), and the 8-state Potts model
(which is first-order in its pure version.) It is backed up by the interface arguments of Kardar
et al [8], which suggest that the Widom exponent for the randomq-state Potts model is
independent ofq for sufficiently largeq. (A similar lack of dependence onq has been
argued for in the case of random Potts spin chains [26]; however, their critical behaviour
is rather different in nature from that of the present case.)

The conjecture in the case of the Ising model and the Ashkin–Teller model (close to the
decoupling point) agrees with the results of a perturbative renormalization group analysis
[14, 16] and with our analysis above: the renormalization group trajectories curl around
and end up at the Ising fixed point, giving Ising exponents, but with logarithmic (or log–
log) modifications. However, a similar analysis [27, 28] applied to the randomq-state
Potts model forq > 2 indicates the existence of a new random fixed point whose critical
exponents are not Ising-like, but depend onq. This analysis is valid only whenq − 2 is
small, but is consistent with earlier renormalization group results [29] forq = 3.

We have not been able to resolve this discrepancy, but would venture a few remarks
which, in fact, may seem to confuse the situation further:

(i) The perturbative renormalization group arguments work with a distribution of
randomness which isself-dual, corresponding on the lattice, for example, to an equal
distribution of strong and weak bonds of strengthsK and K∗ which are dual to each
other. Within the perturbative scheme, this is justified, since it may be argued that weak
randomness which violates self-duality is irrelevant in the renormalization group sense.

(ii) However, the interfacial analysis of Kardaret al [8], which treats horizontal and vertical
bonds on a quite different footing, cannot, by its nature, respect the duality properties
of the model. Indeed, these authors find it necessary to include negative bonds in the
model to access their zero-temperature fixed point, which are excluded in any self-dual
formulation of the problem. The only zero-temperature fixed point in the self-dual

† There is also claimed experimental evidence for the four-state Potts model [25]; however, the randomness
discussed there would appear to favour one sublattice rather than another, and therefore should couple to the order
parameter, corresponding to the random-field problem.
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random model is the percolation point.
(iii) This leads to the picture that the critical behaviour controlled by a zero-temperature

fixed point, discussed by Kardaret al [8], and that found in the perturbative
renormalization group of Ludwig [27], are simply different and correspond to strong
non-self-dual randomness and to weak self-dual randomness, respectively. However,
the numerical results for theq = 4 and q = 8 Potts models, which appear to find
Ising-like exponents independent ofq, useself-dual randomness in order to locate the
critical point precisely. They also consider different strengths of randomness, with no
appreciable difference in their results.

(iv) One would expect critical behaviour controlled by a zero-temperature fixed point to
exhibit hyperscaling violation, as in the random field problem. However, the exponents
found in the numerical work forq = 8 are consistent with hyperscaling, that is, with a
conventional, finite-temperature fixed point as found in the perturbative renormalization
group approach.

Whatever the resolution of this problem, it cannot be that all the universal properties
of the randomq-state Potts model are independent ofq, even if the exponents are. This is
because this critical point separates aq-fold degenerate ordered phase from a non-degenerate
disordered phase, and this degeneracy must reflect itself in the fluctuation contribution to the
free energy near the critical point, even if the exponents are Ising-like. This may be seen in
the example ofN coupled Ising models discussed in this paper: although the relevant critical
fixed point is Ising-like, it in fact corresponds toN decoupled Ising models, not just one.
This will reflect itself in universal amplitude ratios which involve the free energy. However,
because of the expected logarithmic corrections, these may be difficult to analyse from
numerical data. A cleaner test should be through the value of the effective central charge
(which measures the finite-size scaling behaviour of the quenched free energy [30, 31]. In
our example, this isc = 1

2N , and does depend onN . It would be very interesting to
compute this for the randomq-state Potts model. To how many decoupled Ising models
does the randomq-state Potts model correspond at criticality, if indeed its behaviour is
Ising-like?

After this work was completed, the author’s attention was drawn to a recent paper [32]
in which it is shown that random impurities act to restore the continuous nature magnetic
system coupled to elastic degrees of freedom.
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